
42 The Delphi Magazine Issue 72

Dynamic Web
Images With Kylix
by Bob Swart

Last month, I showed you how to
write web server applications

with Kylix Desktop Developer: that
is, without the use of WebBroker.
There was one thing that I didn’t
show you (because my code didn’t
work when I wrote the original
article), which was producing
dynamic images out of a web
server application written in Kylix.

Since last month, I’ve learned
why my code wouldn’t work, won’t
work in fact, but I have reached a
compromise that will often work,
and this article will explain to you
the troubles, workarounds and
other ways to produce dynamic
images with Kylix.

BIOLIFE
The old BDE alias DBDEMOS contains
many tables in Paradox or dBASE
format. For Kylix, all these tables
were converted to XML or binary
CDS files. One of these old tables is
biolife.db, which is available as
biolife.xml and biolife.cds in Kylix.
You can find these files in the
demos/db/data directory (which
isn’t too obvious, if you ask me).
The binary biolife.cds file is
1,103,803 bytes, while the some-
what more readable biolife.xml is
1,471,694 bytes. Because I’ve expe-
rienced some problems when stor-
ing images in XML files when using
Delphi 5, I was glad to see that they
apparently solved this issue, since
Delphi 6 actually also contains the
same two biolife files (apart from
the original biolife.db table of
DBDEMOS).

The trick to producing dynamic
images from a web server (CGI or
Apache DSO) application consists
of two parts. The first part gener-
ates the HTML image tag, where
the source is in fact making
another web server request (pass-
ing the RecNo so it knows which
record to handle), while the
second part implements this

specific web server request and
actually does the work of returning
the binary image data. The first and
second web server requests can be
implemented by two different web
server applications or by one web
server application that is capable
of determining whether or not it
should return HTML or the binary
image data.

In this article, I’ve decided to
write a single web server CGI appli-
cation that implements both the
original HTML content (including
the image tag) and the binary
image data production. In order to
allow the single application to dis-
tinguish from one action to
another, I’ve used a GET variable
called IMG which has the value yes
when we need to produce binary
image data: in that case, we should
also find a variable called RecNo,
containing the specific record
number, as well as a variable called
FieldName, containing the name of
the specific field we need to return.

HTML Production
Images are stored in BLOB fields (or
more specifically, inside graphic
fields), so we need to check the
Fields property of the DataSet to
see if a particular field is a
TGraphicField. Note that in case we
encounter a graphic field, then we
also need to pass the FieldName
itself as GET argument on the URL
(because a dataset record may

potentially contain more than one
TGraphicField).

Note that I’m using the
ScriptName ‘trick’ from last time in
order to make sure that we call
‘ourselves’ again, this time with
the IMG=yes argument to indicate
that we should produce a binary
image. The code to ‘dispatch’ the
right action is very simple, and
consists of a simple if statement
(see the final Listing 4 at the end of
this article).

Image Production
Once we’re inside the second
phase (or should that be second
‘face’?) of our web server applica-
tion, we know the field we must
look at. The question is: how do we
get the binary data out of a
TGraphicField? There are actually
two ways to do this. Using the
high-end WebBroker technology,
I’ve always saved the content of
the field in a MemoryStream, and
returned the MemoryStream to the
Response.ContentStream. But we’re
not working with WebBroker now,
and cannot use streams, I’m afraid.
Fortunately, we can use the
AsString property of the TGraphic-
Field to get the content of the
bitmap in (binary) string charac-
ters. As long as we don’t do any-
thing foolish (like converting the
string to a PChar, which might be
terminated by the first #0 in the
string), the string can hold
everything, including binary data!

The only problem is that the
biolife table (and also the
biolife.xml and biolife.cds gener-
ated files) don’t just store the
image in the Graphic field, but
include an 8-byte Paradox graphic
header as well. In other words:
even if you save the content of

procedure Record2HTML(const DataSet: TDataSet; RecNo: Integer);
var
fields: Integer;

begin
for fields:=0 to Pred(DataSet.FieldCount) do
if DataSet.Fields[fields] IS TGraphicField then
{ GRAPHICS }
writeln('',DataSet.Fields[fields].FieldName,': ',
'<img src="',ScriptName,'?IMG=yes&RecNo=',RecNo,'&FieldName=',
DataSet.Fields[fields].FieldName,'">
')

else
writeln('',DataSet.Fields[fields].FieldName,': ',
DataSet.Fields[fields].AsString,'
')

end {Record2HTML};

➤ Listing 1: Record 2 HTML conversion (cross-platform code).

August 2001 The Delphi Magazine 43

the Graphic field from the biolife
table to disk, you wouldn’t be able
to view it. Skip the first eight bytes,
however, and you’ll end up with a
perfect bitmap.

The only disadvantage is that
the bitmap is in BMP format. As far
as I am aware, this can only be
shown inside Microsoft Internet
Explorer, and not inside Netscape
Navigator. As a result, the biolife
table plus images presented by a
web server application written in
Kylix (and running on Linux) can
only be seen correctly... inside
Internet Explorer on Windows.
Ouch!

Oh well, I guess Borland’s mar-
keting department could always
decide to call it a cross-platform
solution, so no harm done, right?

Bitmap Conversion
In order to try to solve this issue, I
tried to fall back to the WebBroker
solution. In Delphi, I always used
the code snippet in Listing 3 to turn
the content of the TGraphicField
into a Picture, which could then be
turned into a JPEG image! The
interesting part of the Delphi code,
for those who are interested, is in
Listing 3.

Unfortunately, there are at least
two reasons why the above code

doesn’t work in Kylix. First of all,
there is no JPEG unit in Kylix (yet:
but this may come; one other pos-
sibility may be to write the images
out to BMP files and use another
program to convert from BMP to
JPEG: if you know of something
suitable, do let me know!). Second,
it turns out that as soon as you use
a visual CLX component (or unit)
inside a Kylix console application,

then this will turn your CLX appli-
cation into an X application. What
does that mean? Well, the immedi-
ate result is that when you try to
run a console application that uses
the QGraphics unit, for example,
inside a terminal or console
window (without having started
X), then you will get the error mes-
sage ‘could not connect to X server’.
And no matter what I did, I could
not get my web server (console)
applications to work with any of
the visual CLX components or
units. So no QGraphics unit for my
web server applications in Kylix
(this also applies to WebBroker, by
the way).

Final Result
I’m afraid that the final result still
only produces dynamic bitmap
images in the BMP format.

The final Listing 4 also contains
the code for state management, so
we can navigate through the biolife
table and see new images appear
as we move through the result set.

And since we use the ScriptName
variable, it doesn’t matter how you
name this CGI application, it will
always be able to redirect the
second action to itself. Note that

procedure Table2Img(const TableName, FieldName: String; RecNo: Integer);
const
Offset = 8; // sizeof Graphic header

var
DataSet: TClientDataSet;
Str: String;
i: Integer;

begin
DataSet := TClientDataSet.Create(nil);
try
DataSet.FileName := TableName;
DataSetRecNo(DataSet, RecNo); // move to the right RecNo
Str := (DataSet.FieldByName(FieldName) AS TGraphicField).AsString;
for i:=Succ(Offset) to Length(Str) do
write(Str[i]);

finally
DataSet.Close;
DataSet.Free;

end
end {Table2Img};

➤ Listing 2: Table2Img conversion (cross-platform code).

uses
JPEG;

var
Picture: TPicture;
JPEG: TJPegImage;

begin
Picture := TPicture.Create;
Picture.Assign(DataSet.FieldByName(FieldName) AS TGraphicField);
JPEG := TJPegImage.Create;
JPEG.Assign(Picture);

➤ Listing 3

➤ Figure 1

44 The Delphi Magazine Issue 72

the DrBobCGI unit was listed last
month and is on this month’s disk
too, and is available from my
website at www.drbob42.com.

The result of a single biolife
record in HTML, including the

graphic and navigator links, can be
seen in Figure 1.

Note that although we only call
the Record2HTML (to turn a single
record into HTML), I’ve also
image-enabled the DataSet2HTML
routine, so you could decide to
turn the entire biolife table into a
grid in your browser (generating
multiple tags, resulting in the

browser showing multiple images,
if you’re using Internet Explorer,
that is).

Conclusions
There are a number of things I’ve
learned from this exercise. First of
all, I didn’t know you can’t use
visual CLX components inside web
server applications (and this also

➤ Listing 4: CGI application
producing dynamic images
(CLX code).

program DrBob;
{$APPTYPE CONSOLE}
uses
DrBobCGI, Classes, SysUtils, DB, DBClient;

procedure DataSet2HTML(const DataSet: TDataSet);
var
fields: Integer;
RecNo: Integer;

begin
writeln('<table border=1>');
DataSet.Open;
write('<tr>');
for fields:=0 to Pred(DataSet.FieldCount) do
write('<td bgcolor=ffffff>',
DataSet.Fields[fields].FieldName,'</td>');

writeln('</tr>');
DataSet.First;
RecNo := 0;
while not DataSet.Eof do begin
Inc(RecNo);
write('<tr>');
for fields:=0 to Pred(DataSet.FieldCount) do
if DataSet.Fields[fields] IS TGraphicField then
{ GRAPHICS }
writeln('<td><img src="', ScriptName,
'?IMG=yes&RecNo=', RecNo, '&FieldName=',
DataSet.Fields[fields].FieldName, '"></td>')

else
write('<td>', DataSet.Fields[fields].AsString,
'</td>');

writeln('</tr>');
DataSet.Next

end;
writeln('</table>')

end {DataSet2HTML};
procedure Record2HTML(const DataSet: TDataSet; RecNo:
Integer);

var
fields: Integer;

begin
for fields:=0 to Pred(DataSet.FieldCount) do
if DataSet.Fields[fields] IS TGraphicField then
{ GRAPHICS }
writeln('', DataSet.Fields[fields].FieldName,
': ', '<img src="', ScriptName,
'?IMG=yes&RecNo=', RecNo,'&FieldName=',
DataSet.Fields[fields].FieldName, '">
')

else
writeln('',DataSet.Fields[fields].FieldName,':
 ',
DataSet.Fields[fields].AsString,'
')

end {Record2HTML};
procedure NavigatorHTML(const DataSet: TDataSet;
RecNo: Integer);

begin
if RecNo = 0 then
RecNo := 1;

if not DataSet.Active then
DataSet.Open;

write('First | ');
write('<a href="',ScriptName,'?RecNo=', Pred(RecNo),
'">Prior | ');

write('<a href="',ScriptName,'?RecNo=',Succ(RecNo),
'">Next | ');

write('Last | ');
write('<a href="',ScriptName,'?RecNo=',RecNo,
'">Refresh ','(',RecNo,')
')

end {NavigatorHTML};
procedure DataSetRecNo(DataSet: TDataSet; var RecNo:
Integer);

var
i: Integer;

begin
DataSet.Open;
if RecNo = -1 then begin
RecNo := 1;
while not DataSet.Eof do begin
Inc(RecNo);
DataSet.Next

end
end else for i:=1 to Pred(RecNo) do
DataSet.Next;

if DataSet.Eof then begin

// went past Eof, need to backtrack!
Dec(RecNo); // one before Eof
DataSet.First;
for i:=1 to Pred(RecNo) do DataSet.Next

end
end {DataSetRecNo};
procedure Table2HTML(const TableName: String; RecNo:
Integer);

var
DataSet: TClientDataSet;

begin
DataSet := TClientDataSet.Create(nil);
try
DataSet.FileName := TableName;
DataSet.Open;
DataSetRecNo(DataSet, RecNo);
NavigatorHTML(DataSet,RecNo);
writeln('<hr>');
Record2HTML(DataSet,RecNo);
writeln('<hr>');
NavigatorHTML(DataSet,RecNo);
writeln('<hr>');
DataSet2HTML(DataSet);

finally
DataSet.Close;
DataSet.Free;

end
end {Table2HTML};
procedure Table2Img(const TableName, FieldName: String;
RecNo: Integer);

var
DataSet: TClientDataSet;
Str: String;
i: Integer;

begin
DataSet := TClientDataSet.Create(nil);
try
DataSet.FileName := TableName;
DataSetRecNo(DataSet, RecNo);
Str := (DataSet.FieldByName(FieldName) AS
TGraphicField).AsString;

for i:=9 to Length(Str) do
write(Str[i]);

finally
DataSet.Close;
DataSet.Free;

end
end {Table2Img};

const
Biolife = 'biolife.cds';

var
RecNo: Integer;
Dir: String;

begin
RecNo := StrToIntDef(Value('RecNo'),1);
if Value('IMG') = 'yes' then begin
writeln('content-type: image/bmp');
writeln;
Table2Img(Biolife,Value('FieldName'), RecNo)

end else
try
writeln('content-type: text/html');
writeln;
writeln('<html>');
writeln('<body bgcolor=ffffcc>');
writeln(ScriptName,' = ',ParamStr(0),'
');
GetDir(0,Dir);
writeln('Working Directory: ',Dir,'
');
writeln(RemoteAddress,'<hr>');
try
Table2HTML(Biolife, RecNo);

except
on E: Exception do
writeln(E.ClassName,': ',E.Message)

end
finally
writeln('</body>');
writeln('</html>')

end
end.

46 The Delphi Magazine Issue 72

applies to some other CLX compo-
nents, such as Timers). Second, it’s
a bad idea to store graphic fields
inside database tables in the BMP
format. You’re better off storing
them in JPG or PNG: this will make
it easier to extract them and using
PNG does not even compromise
the bitmap quality itself.

But finally, I hope to have shown
you this time and last month that
you can get away with not using
WebBroker for your Kylix web
server applications. In these two
articles, I’ve produced a set of
helpful routines that can help you

to produce HTML for a single
record, entire datasets, a naviga-
tor, images, and more. And I’ve
even shown you how we can
handle more than one different
request in the same web server
application: a very simple action
dispatcher, you could say.

By the time you read this, my
www.drbob42.co.uk domain,
hosted by TDMWeb (highly recom-
mended with very professional
web services), will be running on a
nice Linux web server. With a
cgi-bin directory that will feature a
growing number of Kylix web

server applications, both using
WebBroker and ‘plain’, so if you’re
serious about Kylix for web server
application development, be sure
to check it out!

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-Consultant,
Delphi Clinic Trainer and co-
founder of the Kylix/Delphi
OplossingsCentrum (www.KDOC.
nl) in The Netherlands.

	BIOLIFE
	HTML Production
	Image Production
	Bitmap Conversion
	Final Result
	Conclusions

